Journal of Sound and Vibration (1998) **215**(3), 475–487 Article No. sv981663

SV

NON-LINEAR VIBRATION BY A NEW METHOD

XU MING TIAN, LI JIAN FENG AND CHENG DELIN

Department of Mathematics and Physics, Shandong University of Technology, Jinan, Shandong Province 250061, People's Republic of China

(Received 6 November 1996, and in final form 19 March 1998)

In this paper, a new method is presented for solving the periodic response of a non-linear system. Both period-one and subharmonic responses can be obtained by the method. The stability and bifurcation of the solutions are discussed. Specifically, the period doubling and symmetry-breaking bifurcation are studied in detail.

© 1998 Academic Press

1. INTRODUCTION

In references [1, 2], the perturbation method has been expressed in detail, but this method is suited for weak non-linear problems. One of the systematic ways in which to analyze a non-linear system subjected to periodic excitations is the harmonic balance method [3, 4]. The discretization can be performed on the incremental form of the governing equations, and this is called the incremental harmonic balance method [5–7]. In these methods, an approximately known solution and the Fourier coefficients of some non-linear functions are needed. In the present paper, the method in reference [8], which we have used to solve the linear vibration problem, is developed to solve the non-linear vibration problem.

2. THE METHOD OF ANALYSIS

The governing equation considered can be expressed as the following form

$$\ddot{x} + h\dot{x} + \alpha x + f(x, \dot{x}) = q(t), \tag{1}$$

where h and α are system parameters, $f(x, \dot{x})$ is a non-linear function about \dot{x} and x, q(t) is a periodic function with the period T. The solution x(t) of equation (1) satisfies the following periodic conditions

$$x(t) = x(t + \overline{T})$$
 and $\dot{x}(t) = \dot{x}(t + \overline{T})$,

where \overline{T} is the period of the unknown response x(t). For solving the differential equation (1), the following linear equation is first considered:

$$\ddot{x} + h\dot{x} + \alpha x = \delta(t - t_0), \tag{2}$$

where t and t_0 both belong to the interval $[0, \overline{T}]$, $\delta(t - t_0)$ is a Delta function, that is

$$\delta(t-t_0) = \begin{cases} 0 & t \neq t_0 \\ \infty & t = t_0 \end{cases}$$

0022-460X/98/330475 + 13 \$30.00/0

© 1998 Academic Press

and

$$\int_0^{\bar{T}} \delta(t-t_0) \,\mathrm{d}t = 1.$$

In order to solve equation (2), one discretizes the x(t) and $\delta(t - t_0)$ by Fourier series:

$$x(t) = x_{10} + \sum_{n=1}^{\infty} (x_{1n} \cos n\omega t + x_{2n} \sin n\omega t),$$
 (3a)

$$\delta(t-t_0) = 1/\overline{T} + \frac{2}{\overline{T}} \sum_{n=1}^{\infty} (\cos n\omega t \cos n\omega t_0 + \sin n\omega t \sin n\omega t_0),$$
(3b)

where $\omega = 2\pi/\overline{T}$.

Substituting equations (3a) and (3b) into equation (2) and equating the coefficients of $\cos n\omega t$ (n = 0, 1, 2, ...) and $\sin n\omega t$ (n = 1, 2, ...) on the left and right sides of equation (2), one obtains the solution of equation (2) denoted as $G(t, t_0)$. $G(t, t_0)$ can be written as

$$G(t, t_0) = a_0 + \sum_{n=1}^{\infty} (\alpha_n \cos n\omega t + b_n \sin n\omega t).$$
(4)

where $a_0 = 1/(\overline{T}\alpha)$

$$a_n = c_{1n} \cos n\omega t_0 - c_{2n} \sin n\omega t_0, \qquad b_n = c_{1n} \sin n\omega t_0 + c_{2n} \cos n\omega t_0,$$

here

$$C_{1n} = \frac{2(\alpha - n^2\omega^2)}{\overline{T}(h^2n^2\omega^2 + (\alpha - n^2\omega^2)^2)}, \qquad C_{2n} = \frac{2hn\omega}{\overline{T}(h^2n^2\omega^2 + (\alpha - n^2\omega^2)^2)}.$$

Obviously, $G(t, t_0)$ has the following properties:

$$\frac{\partial G}{\partial t_0} = -\frac{\partial G}{\partial t}, \qquad \frac{\partial^2 G}{\partial t_0^2} = \frac{\partial^2 G}{\partial t^2}.$$
 (5a, b)

Then one has the following proposition.

Proposition 1. The periodic solution x(t) of the differential equation (1) has the following form:

$$x(t) = -\int_{0}^{\bar{T}} f(x, \dot{x}) G(t, t_{0}) dt_{0} + \int_{0}^{\bar{T}} q(t_{0}) G(t, t_{0}) dt_{0}.$$
 (6)

Proof. Let x(t) be the periodic solution of equation (1). Then, multiplying each side of equation (1) by $G(t, t_0)$ and integrating on t_0 over $[0, \overline{T}]$ yields

$$\int_{0}^{\bar{T}} (\ddot{x} + h\dot{x} + \alpha x) G(t, t_0) \, \mathrm{d}t_0 = -\int_{0}^{\bar{T}} f(x, \dot{x}) G(t, t_0) \, \mathrm{d}t_0 + \int_{0}^{\bar{T}} q(t_0) G(t, t_0) \, \mathrm{d}t_0, \qquad (7)$$

476

since

$$\int_0^T \dot{x} G(t, t_0) dt_0 = x G(t, t_0) |_0^T - \int_0^T x \frac{\partial G}{\partial t_0} dt_0 = -\int_0^T x \frac{\partial G}{\partial t_0} dt_0,$$
$$\int_0^T \ddot{x} G(t, t_0) dt_0 = \int_0^T x \frac{\partial^2 G}{\partial t^2} dt_0,$$

by using properties (5a,b) of $G(t, t_0)$, the left side of equation (7) can be changed into the following form:

$$\int_0^T x \left(\frac{\partial^2 G}{\partial t^2} + h \frac{\partial G}{\partial t} + \alpha G \right) \mathrm{d}t_0 = \int_0^T x \delta(t - t_0) \, \mathrm{d}t_0 = x(t)$$

Hence the proposition I is proved. As for the non-linear integral equation (6), substituting expression (4) into equation (6) yields

$$x(t) = p_{10}/2 + \sum_{n=1}^{\infty} (p_{1n} \cos n\omega t + p_{2n} \sin n\omega t),$$
(8)

where

$$p_{10} = 2 \int_0^{\overline{T}} (q(t_0) - f(x, \dot{x})) \alpha_0 \, \mathrm{d}t_0, \qquad p_{1n} = \int_0^{\overline{T}} (q(t_0) - f(x, \dot{x})) \alpha_n \, \mathrm{d}t_0 \qquad (9a, b)$$

$$p_{2n} = \int_0^T (q(t_0) - f(x, \dot{x})) b_n \, \mathrm{d}t_0, \qquad (n = 1, 2, \ldots).$$
(9c)

Substituting expression (8) into equations (9a)–(9c) results in the following non-linear algebraic equations with the unknown numbers $p_{10}, p_{1n}, p_{2n} (n = 1, 2, ...)$

$$p_{10} = \int_{0}^{T} \left[q(t_{0}) - f\left(\sum_{n=1}^{\infty} \left(-p_{1n}n\omega \sin n\omega t_{0} + p_{2n}n\omega \cos n\omega t_{0}\right), \frac{p_{10}}{2} + \sum_{n=1}^{\infty} \left(p_{1n}\cos n\omega t_{0} + p_{2n}\sin n\omega t_{0}\right)\right) \right] a_{0} dt_{0},$$
(10a)
$$p_{1n} = \int_{0}^{T} \left[q(t_{0}) - f\left(\sum_{n=1}^{\infty} \left(-p_{1n}n\omega \sin n\omega t_{0} + p_{2n}n\omega \cos n\omega t_{0}\right), \frac{p_{1n}}{2} + \sum_{n=1}^{\infty} \left(-p_{1n}n\omega \sin n\omega t_{0} + p_{2n}n\omega \cos n\omega t_{0}\right)\right) \right] dt_{0} dt_{0},$$
(10a)

$$\frac{p_{10}}{2} + \sum_{n=1}^{\infty} \left(p_{1n} \cos n\omega t_0 + p_{2n} \sin n\omega t_0 \right) \right] a_n \, \mathrm{d}t_0, \tag{10b}$$

XU MING TIAN ET AL.

$$p_{2n} = \int_0^T \left[q(t_0) - f\left(\sum_{n=1}^\infty \left(-p_{1n}n\omega \sin n\omega t_0 + p_{2n}n\omega \cos n\omega t_0\right), \frac{p_{10}}{2} + \sum_{n=1}^\infty \left(p_{1n}\cos n\omega t_0 + p_{2n}\sin n\omega t_0\right)\right) \right] b_n \, \mathrm{d}t_0 \qquad (n = 1, 2, \ldots)$$
(10c)

In the real calculation, finite unknown numbers p_{1n} and p_{2n} are retained. Then some numerical methods can be applied to solve such non-linear algebraic equations. Therefore, the period solution with the form (8) can be obtained.

3. STABILITY AND BIFURCATION OF SOLUTION

The Floquet method can be used for the stable analysis of a solution. When the solution x(t) is perturbated by $\delta x(t)$, the increments equation is

$$\delta \ddot{x} + h\delta \dot{x} + \alpha \delta x + \frac{\partial f}{\partial \dot{x}} \delta \dot{x} + \frac{\partial f}{\partial x} \delta x = 0.$$
(11)

Equation (11) in state variable form and matrix notation is

$$\dot{Z} = A(t)Z,\tag{12}$$

where

$$Z(t) = \begin{pmatrix} \delta \dot{x} \\ \delta x \end{pmatrix}, \qquad A(t) = \begin{pmatrix} -h - \frac{\partial f}{\partial x} & -\alpha - \frac{\partial f}{\partial x} \\ 1 & 0 \end{pmatrix}.$$

The stability of equation (12) is checked by evaluating the eigenvalues of the transformation matrix [B] which transforms the state vector $Z(n\overline{T})$ at $t = n\overline{T}$ to $Z((n+1)\overline{T})$ at $t = (n+1)\overline{T}$. If the absolute magnitudes of the eigenvalues are less than unity, the solution is stable. The explicit form [B] can be written as [9]

$$[B] = \prod_{i=1}^{N} \exp\{\Delta t [A(i\Delta t)]\}, \qquad \Delta t = \overline{T}/N,$$

where

$$\exp[A] = I + [A] + [A]^2/2! + [A]^3/3! + \cdots$$

Instability occurs if a real eigenvalue exceeds unity, this means that there may be a fold or a tangential bifurcation with unchanged period. When instability occurs with a negative real eigenvalue less than -1, there is period doubling. Finally, when two complex conjugate eigenvalues escape the unit circle, one has a Hopf bifurcation point.

4. EXAMPLES

Example 1: free vibration. Consider the following system

$$\ddot{x}(t) + \alpha x(t) + b x^{3}(t) = 0$$
 ($\alpha > 0, b > 0$), $x(0) = A, \dot{x}(0) = 0.$ (13)

First the following equation is considered

$$\ddot{x} + \alpha x = \delta(t - t_0).$$

478

As $\dot{x}(0) = 0$, the solution can be expanded in cosine series, then using the similar method mentioned above gives

$$G(t, t_0) = \frac{1}{\alpha T} + \sum_{n=1}^{\infty} \frac{2}{T(a - n^2 \omega^2)} \cos n \omega t_0 \cos n \omega t,$$

where T is the period of the unknown solution x(t) of equation (13). Therefore, the following integral equation is obtained

$$x(t) = \sum_{n=1}^{\infty} x_n \cos n\omega t + x_0/2.$$

Here

$$x_0 = -\frac{2b}{aT} \int_0^T x^3(t_0) \, \mathrm{d}t_0, \tag{14a}$$

$$x_n = -\frac{2b}{T(a-n^2\omega^2)} \int_0^T x^3(t_0) \cos n\omega t_0 \, \mathrm{d}t_0 \qquad (n=1,\,2,\,\ldots).$$
(14b)

Let

$$x^{3}(t_{0})=\sum_{n=0}^{\infty}\bar{x}_{n}\cos n\omega t_{0}.$$

TABLE 1a	
Variation of the cosine coefficients of a 1T period solution with respect t	to λ

λ	p_{10}	p_{11}	p_{12}	p_{13}	Stability
3.0	-1.9963	-4.9899e - 2	0.0	0.0	s
2.4	-1.9899	-8.3659e - 2	0.0	0.0	s
2.1	-1.9799	-1.1609e - 1	0.0	0.0	u
1.8	-1.9541	-1.7333e - 1	-1.8156e - 3	0.0	u
1.4	-1.8159	-3.3867e - 1	-1.0876e - 2	0.0	u

Note: *u* denotes instability, and *s* stability.

TABLE 1b

Variation of the sine coefficients of a 1T period solution with respect

	ιο λ									
λ	p_{21}	p_{22}	p_{23}							
3.0	1.8703e - 3	0.0	0.0							
2.4	4.1961e - 3	0.0	0.0							
2.1	7.1020e - 3	0.0	0.0							
1.8	1.3611e - 2	0.0	0.0							
1.4	4.0934e - 2	3.1278e - 2	0.0							

	5	55	<i>3</i> 1	1	
λ	p_{10}	p_{11}	p_{12}	p_{13}	Stability
2.1	-1.9662	-0.8486e - 1	-0.1169e - 0	-0.1630e - 2	s
1.84	-1.6689	-0.3751e - 0	-0.1779e - 0	-0.1271e - 1	S
1.7	-1.5084	-0.4396e - 0	-0.2150e - 0	-0.1980e - 1	u
1.5	-1.2873	-0.4870e - 0	-0.2737e - 0	-0.3191e - 1	u
1.3	-1.0579	-0.4960e - 0	-0.3389e - 0	-0.4718e - 1	u

Variation of the cosine coefficients of a 2T period solution with respect to λ

TABLE 2b

Variation of the sine coefficients of a 2T period solution with respect to λ

λ	p_{21}	p_{22}	p_{23}
2.1	0.3253e - 1	0.8269e - 2	0.7866e - 3
1.84	0.1138e - 0	0.3269e - 1	0.7425e - 2
1.7	0.1227e - 0	0.4286e - 1	0.1132e - 1
1.5	0.1158e - 0	0.5401e - 1	0.1646e - 1
1.3	0.1041e - 0	0.6212e - 1	0·2196e − 1

According to the formula of the coefficients of product of two functions [10], one obtains

$$\bar{x}_{n} = \frac{x_{0}^{2} x_{n}}{4} + \frac{x_{n}}{2} \sum_{m=1}^{\infty} x_{m}^{2} + \frac{1}{4} \sum_{m=1}^{\infty} x_{0} x_{m} (x_{m+n} + x_{m-n}) + \frac{1}{4} \sum_{m=1}^{\infty} (x_{m+n} + x_{m-n}) \sum_{p=1}^{\infty} x_{p} (x_{p+m} + x_{p-m}).$$
(15)

Substituting expression (15) into equations (14a) and (14b) gives

$$x_{0} = -\frac{b}{a} \left(\frac{x_{0}^{3}}{4} + \frac{x_{0}}{2} \sum_{m=1}^{\infty} x_{m}^{2} + 0.5 \sum_{m=1}^{\infty} x_{0} x_{m}^{2} + 0.5 \sum_{m=1}^{\infty} x_{m} \sum_{p=1}^{\infty} x_{p} (x_{p+m} + x_{p-m}) \right)$$
$$x_{n} = -\frac{b}{\alpha - n^{2} \omega^{2}} \left(\frac{x_{0}^{2} x_{n}}{4} + \frac{x_{n}}{2} \sum_{m=1}^{\infty} x_{m}^{2} + \frac{1}{4} \sum_{m=1}^{\infty} x_{0} x_{m} (x_{m+n} + x_{m-n}) + \frac{1}{4} \sum_{m=1}^{\infty} (x_{m+n} + x_{m-n}) \sum_{p=1}^{\infty} x_{p} (x_{p+m} + x_{p-m}) \right) \qquad (n = 1, 2, \ldots),$$

			I		1	NO	N-1	LIN	EAR VIBRATIO I	N	
		Stability	s	s	n	n	n	n			
m with respect to λ	о <i>х</i>	p_{16}	-0.1310e - 1	-0.1325e - 1	-0.1305e - 1	-0.1304e - 1	-0.1297e - 1	-0.1282e - 1	~	p_{26}	
	ion with respect to	p_{15}	p_{15}	P_{15} P_{15} $-0.1639e - 2$ $-0.2930e - 2$ $-0.3841e - 2$ $-0.4321e - 2$ $-0.5668e - 2$ $-0.7579e - 2$	on with respect to	p_{25}					
a	r Period soluti	$p_{^{14}}$	-0.1807e0	-0.1807e0 -0.1830e0 -0.1834e0 -0.1837e0 -0.1859e0 -0.1895e0	b Period solutic	p_{24}					
TABLE 3a Variation of the cosine coefficients of a 41	coefficients of a 4	p_{13}	-0.5099e - 2	-0.9253e - 2	-0.1161e - 1	-0.1348e - 1	-0.1814e - 1	-0.2436e - 1	TABLE 3 0efficients of a 41	p_{23}	
	of the cosine	of the cosme of p_{12}	<i>p</i> ₁₂	-0.3793e0	-0.3782e0	-0.3756e0	-0.3739e0	-0.3678e0	-0.3592e0	n of the sine co	p_{22}
	Variation	p_{11}	-0.1711e - 2	-0.3233e - 2	-0.3978e - 2	-0.4943e - 2	-0.6055e - 2	-0.7451e - 2	Variatio	p_{21}	
		p_{10}	-1.6543	-1.6440	-1.6410	-1.6390	-1.6280	-1.6121		r	
		х	1.825	1.826	1.8035	1.8	1.78	1.75			

х ,	p_{26}	0.7534e - 2	0.7776e - 2	0.7972e - 2	0.7699e - 2	0.7653e - 2	0.7707e - 2
on with respect to	p_{25}	-0.3222e - 2	-0.5322e - 2	-0.7327e - 2	-0.7639e - 2	-0.1029e - 1	-0.1328e - 1
T period soluti	p_{24}	0.3329e - 1	0.3402e - 1	0.3469e - 1	0.3391e - 1	0.3376e - 1	0.3391e - 1
oefficients of a 4	p_{23}	-0.1069e - 1	-0.1656e - 1	-0.2238e - 1	-0.2337e - 1	-0.3082e - 1	-0.3796e - 1
of the sine c	p_{22}	0.1150e0	0.1171e0	0.1183e0	0.1177e0	0.1186e0	0·1206e0
Variation	p_{21}	-0.5034e - 1	-0.8062e - 1	-0.1072e0	-0.1156e0	-0.1548e0	-0.1979e0
	ч	1.825	1.826	1.8035	1.8	1.78	1.75

NON-LINEAR VIBRATION

481

	Stability	s	n	n	n	n		p_{28}	0.34e - 1	0.34e - 1	0.34e - 1	0.35e - 1
λ	$p_{^{18}}$	-0.18e0	-0.18e0	-0.18e0	-0.19e0	-0.19e0		72	ie – 2	e-2	e-2	e – 1
ect to λ	$p_{^{17}}$	0.0	0.13e - 2	0.13e - 1	0.28e-2	0.18e-2	ct to λ	-0.25	-0.47	-0.70	-0.1	
8T period solution with respec	p_{16}	-0.12e - 1	-0.13e - 1	-0.12e - 1	-0.12e - 1	-0.17e - 1	ion with respe	p_{26}	-0.21e - 1	-0.23e - 1	-0.21e - 1	-0.72e - 1
	p_{15}	-0.11e - 2	-0.14e - 2	-0.16e - 2	-0.27e - 2	0.15e - 2	4b T period solut	p_{25}	0.13e - 2	0.19e - 2	0.0	0.38e - 2
icients of a	$p_{^{14}}$	-0·38e0	-0.37e0	-0.38e0	-0.38e0	-0.38e0	TABLE <i>ients of a</i> 8	$p_{^{24}}$	0.12e0	0·12e0	0·12e0	0.12e0
e cosine coeff	p_{13}	0.83e - 2	0.14e - 1	0.18e - 1	0.33e - 1	0.36e - 1	he sine coeffi	p_{23}	– 0·85e – 2	-0.17e - 1	-0.27e - 1	-0.45e - 1
uriation of th	p_{12}	-0.42e - 2	-0.48e - 2	-0.42e - 2	-0.43e - 2	-0.55e - 2	ariation of t	p_{22})·10e0 -	•11e0 -)·10e0 -)·11e0
Var	p_{11}	-0.57e - 2	-0.94e - 2	-0.13e - 1	-0.24e - 1	-0.27e - 1	4		- 2 - (- 2 -(- 1 - (
	p_{10}	- 1.64 -	- 1.64	-1.64 -	-1.62	- 1.59 -		p_{21}	-0.53e	-0.96e	-0.18e	-0.78e
	γ	1.8045	1.804	1.8	1.78	1.75		r	1.8045	1.804	$1 \cdot 8$	1.78

49	3
TARLE	

XU MING TIAN ET AL.

0.37e - 1

-0.14e - 1

-0.28e - 1

0.49e - 2

0.12e0

-0.53e - 1

-0.14e0

-0.34e - 1

1.75

		Stability	s	S	n	n	
	о х	p_{16}	0.0	0.0	0.0	-0.3393e - 2	
	ttion with respect t	p_{15}	-0.1596e - 1	-0.8887e - 2	-0.6515e - 2	-0.3658e - 1	
JE 5a	a 3T period solu	p_{14}	0.0	0.0	0.0	0.5592e - 1	E Sb
TABLI TABLI	ne coefficients of	p_{13}	-0.9258e - 1	-0.2631e - 1	-0.2129e - 1	-0.2365e - 1	TABI
	iation of the cosi	$p_{^{12}}$	0.0	0.0	0.1058e-2	0.1813e0	
	Var	p_{11}	1.3775	1.4594	1.4393	$1 \cdot 1494$	
		p_{10}	0.0	0.0	0.1056e - 2	0·2785e0	
		r	2.1	1.9	1.7	1.3	

	0 h	p_{26}	0.0	0.0	0.0	0.1610e - 1
	ution with respect to	p_{25}	0.1109e - 2	0.9757e - 2	0.1084e - 1	-0.2520e - 1
	3T period solı	$p_{^{24}}$	0.0	0.0	0.0	-0.1765e0
	coefficients of a	p_{23}	0.1539e0	0·1272e0	0.1048e0	0.9734e - 1
	ation of the sine	p_{22}	$0 \cdot 0$	0.0	-0.3885e - 2	-0.3280e0
	Vari	p_{21}	0.6827e0	0.3688e0	0·2256e0	0.3118e0
		r	$2 \cdot 1$	1.9	1.7	1.3

when m - n < 0, $x_{m-n} = x_{n-m}$. In the above equations, if x_0 , x_1 are retained only, and considering x(0) = A, one obtains the following equations

$$x_{0} = -\frac{b}{a} \left(\frac{x_{0}^{3}}{4} + x_{0} x_{1}^{2} + 0.5 x_{1}^{2} x_{0} \right),$$
$$x_{1} = -\frac{b}{a - \omega^{2}} \left(\frac{3x_{0}^{2} x_{1}}{4} + \frac{3x_{1}^{3}}{4} \right),$$
$$\frac{x_{0}}{2} + x_{1} = A.$$

Solving the above equations gives

$$x_0 = 0.0, \qquad x_1 = A, \qquad \omega^2 = a + \frac{3}{4}bA^2.$$

This agrees with the results obtained by the perturbation and average methods [2]. Example 2: Duffing system. The governing equation of the system is

$$\ddot{x} + 0.1\dot{x} - 0.5x + 0.5x^3 = 0.4\cos\lambda t.$$
(16)

From now on, it is assumed that $T = 2\pi/\lambda$. In our computation, a $1T(\overline{T} = 1T)$ period solution is found. The Fourier coefficients of the solution are shown in Tables 1(a) and (b). For this solution, when $\lambda > 2.1$, it is stable, when $\lambda = 2.1$, a negative real eigenvalue of [B] is less than -1, so there is period doubling. Two 2T period solutions occur after the period doubling. The Fourier coefficients of one of them are illustrated in Tables 2(a) and (b), and those of the others are only different in the sign of even harmonic components. When $\lambda > 1.825$, the solution is stable, while $\lambda = 1.825$, a negative real eigenvalue of [B] is less than -1. Therefore the second period doubling occurs, and four 4T period solutions are born. Only one is listed in Tables 3(a) and (b). The four 4T period solutions are stable when $\lambda > 1.8045$. While $\lambda = 1.8045$, the third period doubling happens, and eight 8T period solutions are born. The Fourier coefficients of only one of them are listed in Tables 4(a) and (b). From these tables, one can see that the stable region of the 8T period solutions is very small. A 3T period solution is obtained, whose Fourier coefficients are listed in Tables 5(a) and (b). When $\lambda > 1.7$, the coefficients of the even terms are zero, and so it has symmetry; when $\lambda \ge 1.7$, it becomes unsymmetric, and therefore a symmetry-breaking bifurcation occurs. The above results obtained by the present method agree with those depicted in Figure 5(d) of reference [11].

Time	Time histories for $\omega = 1$ obtained with different numbers of harmonic terms (NH)											
<i>NH t</i> :	0	$\pi/6$	$\pi/3$	$\pi/2$	$2 \pi/3$	$5 \pi/6$	π	Source of results				
3	5·352 5·352	4·813 4·813	$2.979 \\ 2.980$	$0.534 \\ 0.534$	-2.049 - 2.048	-4.176 - 4.176	$\begin{array}{r} -5\cdot 352 \\ -5\cdot 352 \end{array}$	Present paper Reference [12]				
5	5·359 5·359	4·793 4·793	2·984 2·985	$0.529 \\ 0.529$	$-2.042 \\ -2.041$	-4.172 - 4.172	$\begin{array}{r} -5\cdot359\\ -5\cdot359\end{array}$	Present paper Reference [12]				
8	5·360 5·360	4·793 4·793	2·984 2·985	$0.528 \\ 0.529$	$-2.043 \\ -2.043$	-4.173 - 4.173	$\begin{array}{r} -5\cdot 360 \\ -5\cdot 360 \end{array}$	Present paper Reference [12]				

TABLE 6

Example 3. Consider the single-degree-of-freedom system consisting of a mass, a viscous damper, and a piecewise-linear spring. The equation of motion can be written as

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + c\frac{\mathrm{d}x}{\mathrm{d}t} + kx + F(x) = \cos\omega t,$$

where m, c, k, t and x denote the mass, viscous damping coefficient, linear spring constant, time and displacement, respectively. ω is the frequency of the external force. The non-linear restoring force F(x) can be expressed as follows:

$$F(x) = k_1 h(x - e_1)(x - e_1) + k_{-1} h(e_{-1} - x)(x - e_{-1}),$$

TABLE 7a

Variation of	` the	cosine	coefficients o	fa	1T	period	solutic	n u	1 with	<i>i</i> respect	to 1	f
./									•			

f	p_{10}	p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	$u_1 (t = 0)$
1.0	0.0	1.184	0.0	5·295e − 2	0.0	0.0	0.0	1.23
2.1	0.0	1.462	0.0	1.504e - 1	0.0	1.092e - 2	0.0	1.62
2.15	-1.571e - 2	1.471	0.0	1.543e - 1	0.0	1.134e - 2	0.0	1.63
2.5	3.086e - 1	1.399	-1.292e - 1	7.188e - 2	1.308e - 2	-1.991e - 2	6.298e - 3	1.75
3.0	4.662e - 1	1.426	-2.738e - 1	6·473e − 2	-2.734e - 3	-2.892e - 2	8.828e - 3	1.85
6.6	6.636e - 1	1.813	-4.461e - 1	5·495e − 1	-9.899e - 2	9·719e − 2	-2.864e - 2	2.32

TABLE 7b

Variation of the sine	coefficients of	$a \ 1T \mu$	period sol	lution u_1	with	respect of	of f
-----------------------	-----------------	--------------	------------	--------------	------	------------	------

f	p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}
1.0	3.942e - 1	0.0	5·986e – 2	0.0	4·456e - 3	0.0
2.1	2.708e - 1	0.0	6.613e − 2	0.0	9·457e − 3	0.0
2.15	2.685e - 1	3.922e - 2	6.630e - 2	6.1051e - 3	9.6340e − 3	0.0
3.0	3.606e - 1	-6.951e - 1	7.841e - 2	-1.081e - 1	2.423e - 2	-7.208e - 3
6.6	2.559e - 1	-2.184e - 1	3·779e − 2	-8.317e - 2	3.097e - 2	-2.478e - 2

TABLE 7c

γ and to γ the cosine coefficients of a 11 period solution d with respect to	V	ariation o	f the	cosine	coefficients a	of a 1	1T	period	soluti	on u	5 with	i respect i	to	f
--	---	------------	-------	--------	----------------	--------	----	--------	--------	------	--------	-------------	----	---

f	p_{10}	p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	$u_1 (t = 0)$
1.0	0.0	1.185	0.0	5·295e − 2	00	0.0	0.0	1.12
2.1	0.0	1.419	0.0	1·257e − 1	0.0	5.931e - 3	0.0	1.55
2.15	1.039e - 2	1.429	-7.479e - 2	1.302e - 1	0.0	6·453e − 3	0.0	1.56
3.0	1.588e - 1	1.480	9.297e - 2	1.409e - 1	4.944e - 2	-2.436e - 3	9·114e − 3	1.42
6.6	5.400e - 1	1.797	-3.222e - 1	5·419e − 1	-5.575e - 2	8·536e − 2	-1.322e - 2	2.317

TABLE 7d

	-		-	-	-	-
f	p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}
1.0	5·598e − 1	0.0	7·144e − 2	0.0	3.600e - 3	0.0
2.1	4.250e - 1	0.0	9·549e − 2	0.0	1.226e - 2	0.0
2.15	4.219e - 1	-0.980e - 3	9.613e - 2	-1.928e - 3	1.262e - 2	0.0
3.0	4.302e - 1	-4.477e - 1	8.324e - 2	-6.842e - 2	2.898e - 3	-5.502e - 3
6.6	4.241e - 1	-2.883e - 1	6.302e - 2	-1.097e - 1	4.055e - 2	-3.431e - 2

	The error of the 1T period solution										
t ER	$\begin{array}{c} 0 \cdot 0 \\ -1 \cdot 33 e - 2 \end{array}$	$\frac{T/5}{1.44e-2}$	$\frac{2T/5}{-5\cdot31e-3}$	$\frac{3T/5}{-2\cdot25e-3}$	$\frac{4T/5}{9\cdot42e-3}$	T - 1.33e - 2					

where $h(x - e_1)$ is the step function, which satisfies the following conditions

$$h(x-e_1) = \begin{cases} 1 & \text{when } x \ge e_1 \\ 0 & \text{when } x < e_1 \end{cases}.$$

when m = 1, k = 1, $k_1 = k_{-1} = 9$, $e_1 = 5$, $e_{-1} = -5$, $c/2\sqrt{mk} = 0.01$, the fundamental response of the symmetric piecewise linear system is obtained. To compare with the results of reference [12] and show the convergence of the solution obtained, this problem has also been computed with three, five and again eight odd harmonic terms (i.e., up to $\cos(15 \omega t)$) and $\sin(15 \omega t)$). The time histories obtained for $\omega = 1$ are listed in Table 6. Comparisons with the results of reference [12] show good agreement. The fundamental solution obtained by the present method is

 $5 \cdot 21211 \cos t + 0 \cdot 108543 \cos 3t + 0 \cdot 0274508 \cos 5t + 0 \cdot 00877528 \cos 7t$

+ $0.00266933 \cos 9t + 0.552429 \sin t + 0.0344767 \sin 3t + 0.0157503 \sin 5t$ + $0.00788707 \sin 7t + 0.00367589 \sin 9t + 0.00137932 \sin 11t$.

Example 4. Consider a system of two simply supported beam with immovable ends linked by a linear spring. If only one mode of vibration is considered, according to reference [13], the governing equations of the system are

$$\ddot{u}_1 + 2\mu_1\dot{u}_1 + (k_1 + k_s)u_1 + \alpha_1u_1^3 - k_su_2 = f_1\cos t,$$

$$\ddot{u}_2 + 2\mu_2\dot{u}_2 + (k_2 + k_s)u_2 + \alpha_2u_2^3 - k_su_1 = f_2\cos t,$$

where μ_i , k_i , α_i , k_s and f_i are the coefficients of damping, linear stiffness, cubic stiffness, linking stiffness and excitation amplitude of the system, respectively. In the following discussion, the system parameters are assumed to be $k_1 = k_2 = 0.5$, $\alpha_1 = \alpha_2 = 1$, $\mu_1 = 0.1$, $\mu_2 = 0.2$, $k_s = 0.3$, $f_1 = f_2 = f$. Using the above method, the solution of period one is obtained. Its Fourier coefficients are listed in Tables 7(a)–(d). When f = 2.15, the coefficients of even terms are not equal to zero again, and so the symmetry-breaking occurs. At f = 6.6, a eigenvalue of [B] is less than -1, and so doubling bifurcation happens. These results agree with those of reference [13].

	TABLE 9									
The error of the 1T period solution										
t	0.0	T/5	2 <i>T</i> /5	3 <i>T</i> /5	4T/5	Т				
ER	-4.84e - 4	3.00e - 4	-4.96e - 5	-2.20e - 4	4.01e - 4	-4.87e - 4				

NON-LINEAR VIBRATION

5. THE CONVERGENCE AND ERROR

Consider the 1*T* period solution shown in Tables 1(a) and (b), when $\lambda = 2.0$, of p_{10} , p_{11} , p_{21} are retained as the unknown numbers in the algebraic equations (10a,b,c) one obtains

 $-1.973900600248/2 - 0.13124110735487 \cos 2t + 0.0086481375894509 \sin 2t$. (17)

Substituting expressions (17) into the left side of equation (16) and subtracting the right side of equation (16) gives the error denoted by ER. The results are listed in Table 8. If p_{10} , p_{11} , p_{22} , p_{22} are taken as the unknown numbers, the solution has the following form:

$$-1.9738340460742/2 - 0.131382794580 \cos 2t - 8.4214983507991e - 4 \cos 2t + 8.668843073719e - 3 \sin 2t + 1.3434170978144e - 4 \sin 4t.$$

The errors described in the above are listed in Table 9. Therefore, one can see that the new method converges rapidly and the solutions obtained by the present method are very accurate.

6. CONCLUSION

In the present paper, a new approach is given for non-linear vibration. This method can be widely used to solve non-linear vibration problems, and can also be used to study the bifurcation phenomenon, especially the symmetry-breaking and period doubling bifurcation. Moreover, it has good convergence and accuracy.

REFERENCES

- 1. A. H. NAYFEH 1973 Perturbation Methods. New York: John Wiley.
- 2. A. H. NAYFEH and D. T. MOOK 1979 Nonlinear Oscillations. New York: John Wiley.
- 3. M. URABE 1965 Archives for Rational Mechanics and Analysis 20, 120–152. Galerkin's procedure for nonlinear periodic systems.
- 4. M. URABE and A. REITER 1966 *Journal of Mathematics Applications and Analysis* 14, 107–140. A numerical computation of nonlinear forced oscillations by Galerkin procedure.
- 5. S. L. LAU and Y. K. CHEUNG 1981 Journal of Applied Mechanics 48, 959–964. Amplitude incremental variational principle for nonlinear vibration of elastic system.
- 6. S. L. LAU, Y. K. CHEUNG and S. Y. WU 1983 *Journal of Applied Mechanics* 50, 871–816. Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear system.
- 7. A. A. FERRI 1986 Journal of Applied Mechanics 53, 455–457. On the equivalence of the incremental harmonic balance method and the harmonic balance–Newton Raphson Method.
- 8. M. Xu and D. CHENG 1994 *Journal of Sound and Vibration* 177, 565–571. A new approach to solving a type of vibration problem.
- 9. P. FERIEDMANN, C. E. HAMMOND and T. H. WOO 1977 International Journal for Numerical Method in Engineering 11, 1117–1136. Efficient numerical treatment of periodic system with application to stability problem.
- 10. YAN ZONG DA 1989 The Fourier Series Method in Structure Mechanics. Tian Jin: Tian Jin University Press (in Chinese).
- 11. K. L. JANICKI and W. SZEMPLIN SKA-STUPNICKA 1995 Journal of Sound and Vibration 180, 253–269. Subharmonic resonances and criteria for escape and chaos in a driven oscillator.
- 12. S. L. LAU and W.-S. ZHANG 1992 Journal of Applied Mechanics 59, 153–160. Nonlinear vibrations of piecewise-linear system by incremental harmonic balance method.
- 13. A. Y. T. LEUNG and S. K. CHUI 1995 *Journal of Sound and Vibration* 181, 619–633. Nonlinear vibration of coupled Duffing oscillators by an improved incremental harmonic balance method.